Document Type

Article

Publication Date

8-16-2010

Publication Title

Physical Review D - Particles and Fields

Department

Department of Physics and Astronomy

Abstract

Through a detailed numerical investigation in three spatial dimensions, we demonstrate that long-lived time-dependent field configurations emerge dynamically during symmetry breaking in an expanding de Sitter spacetime. We investigate two situations: a single scalar field with a double-well potential and an SU(2) non-Abelian Higgs model. For the single scalar, we show that large-amplitude oscillon configurations emerge spontaneously and persist to contribute about 1.2% of the energy density of the Universe. We also show that for a range of parameters, oscillon lifetimes are enhanced by the expansion and that this effect is a result of parametric resonance. For the SU(2) case, we see about 4% of the final energy density in oscillons.

DOI

10.1103/PhysRevD.82.043517

Share

COinS