Document Type
Article
Publication Date
11-25-2013
Publication Title
Physics Letters, B
Department
Department of Physics and Astronomy
Abstract
Spatially-bound objects across diverse length and energy scales are characterized by a binding energy. We propose that their spatial structure is mathematically encoded as information in their momentum modes and described by a measure known as configurational entropy (CE). Investigating solitonic Q-balls and stars with a polytropic equation of state P=Kργ, we show that objects with large binding energy have low CE, whereas those at the brink of instability (zero binding energy) have near maximal CE. In particular, we use the CE to find the critical charge allowing for classically stable Q-balls and the Chandrasekhar limit for white dwarfs (γ=4/3) with an accuracy of a few percent.
DOI
10.1016/j.physletb.2013.10.005
Dartmouth Digital Commons Citation
Gleiser, Marcelo and Sowinski, Damian, "Information-Entropic Stability Bound for Compact Objects: Application to Q-Balls and the Chandrasekhar Limit of Polytropes" (2013). Dartmouth Scholarship. 2027.
https://digitalcommons.dartmouth.edu/facoa/2027