Document Type

Article

Publication Date

2-26-2007

Publication Title

The Astronomical Journal

Department

Department of Physics and Astronomy

Abstract

We present neutral hydrogen observations of 54 galaxies in the Pegasus Cluster. The observations include single-dish H I measurements, obtained with the Arecibo telescope for all 54 galaxies in the sample, as well as H I images obtained with the Very Large Array (VLA) for 10 of these. The Arecibo profiles reveal an overall H I deficiency in the cluster, with similar to 40% of the galaxies in the core of the cluster showing modest deficiencies of typically a factor of 2-3. The HI morphology of so me galaxies shows that the HI disk is smaller than the optical disk and slightly offset from the stars. We find a correlation between HI deficiency and the ratio of the HI disk size to optical disk size. More HI deficient galaxies have relatively smaller HI disks, a configuration that is usually attributed to an interaction between the interstellar medium (ISM) of the galaxy and the hot intracluster med ium (ICM). Such a result is surprising since the Pegasus cluster has a low level of X-ray emission, and a low velocity dispersion. The low velocity dispersion, coupled with the lack of a dense hot ICM indicate that ram pressure stripping should not play a significant role in this environment. In addition, two of the galaxies, NGC7604 and NGC7648, are morphologically peculiar. Their peculiarities indicate contradictory scenarios of what is triggering their unusual star formation. Hα imaging, along with long-slit spectroscopy of NGC7648 reveal morphological features which point to a recent tidal interaction. On the other hand, Hα imaging of NGC7604 reveals a strong episode of star formation concentrated into an asymmetric arc, preferentially located on one side of the galaxy. VLA HI mapping shows the HI also highly concentrated into that region, suggestive of a ram pressure event. Our data indicate that ISM-ICM interactions may play a role in a wider variety of environments than suggested by simple ram pressure arguments.

COinS