Document Type
Article
Publication Date
8-1-2010
Publication Title
The Astrophysical Journal
Department
Department of Physics and Astronomy
Abstract
The open cluster M67 has solar metallicity and an age of about 4 Gyr. The turnoff (TO) mass is close to the minimum mass for which solar metallicity stars develop a convective core during main sequence evolution as a result of the development of hydrogen burning through the CNO cycle. The morphology of the color-magnitude diagram (CMD) of M67 around the TO shows a clear hook-like feature, a direct sign that stars close to the TO have convective cores. VandenBerg et al. investigated the possibility of using the morphology of the M67 TO to put constraints on the solar metallicity, particularly CNO elements, for which solar abundances have been revised downward by more than 30% over the last few years. Here, we extend their work, filling the gaps in their analysis. To this aim, we compute isochrones appropriate for M67 using new (low metallicity) and old (high metallicity) solar abundances and study whether the characteristic TO in the CMD of M67 can be reproduced or not. We also study the importance of other constitutive physics on determining the presence of such a hook, particularly element diffusion, overshooting and nuclear reaction rates. We find that using the new solar abundance determinations, with low CNO abundances, makes it more difficult to reproduce the characteristic CMD of M67. This result is in agreement with results by VandenBerg et al. However, changes in the constitutive physics of the models, particularly overshooting, can influence and alter this result to the extent that isochrones constructed with models using low CNO solar abundances can also reproduce the TO morphology in M67. We conclude that only if all factors affecting the TO morphology are completely under control (and this is not the case), M67 could be used to put constraints on solar abundances.
DOI
10.1088/0004-637X/718/2/1378
Original Citation
Z. Magic et al 2010 ApJ 718 1378
Dartmouth Digital Commons Citation
Magic, Z.; Serenelli, A.; Weiss, A.; and Chaboyer, B., "On Using the Color-Magnitude Diagram Morphology of M67 to Test Solar Abundances" (2010). Dartmouth Scholarship. 2215.
https://digitalcommons.dartmouth.edu/facoa/2215