Unsupervised gene set testing based on random matrix theory
Document Type
Article
Publication Date
11-4-2016
Publication Title
BMC Bioinformatics
Department
Geisel School of Medicine
Abstract
Background: Gene set testing, or pathway analysis, is a bioinformatics technique that performs statistical testing on biologically meaningful sets of genomic variables. Although originally developed for supervised analyses, i.e., to test the association between gene sets and an outcome variable, gene set testing also has important unsupervised applications, e.g., p-value weighting. For unsupervised testing, however, few effective gene set testing methods are available with support especially poor for several biologically relevant use cases. Results: In this paper, we describe two new unsupervised gene set testing methods based on random matrix theory, the Mar. cenko-Pastur Distribution Test (MPDT) and the Tracy-Widom Test (TWT), that support both self-contained and competitive null hypotheses. For the self-contained case, we contrast our proposed tests with the classic multivariate test based on a modified likelihood ratio criterion. For the competitive case, we compare the new tests against a competitive version of the classic test and our recently developed Spectral Gene Set Enrichment (SGSE) method. Evaluation of the TWT and MPDT methods is based on both simulation studies and a weighted p-value analysis of two real gene expression data sets using gene sets drawn from MSigDB collections. Conclusions: The MPDT and TWT methods are novel and effective tools for unsupervised gene set analysis with superior statistical performance relative to existing techniques and the ability to generate biologically important results on real genomic data sets.
DOI
10.1186/s12859-016-1299-8
Dartmouth Digital Commons Citation
Frost, H Robert and Amos, Christopher I., "Unsupervised gene set testing based on random matrix theory" (2016). Dartmouth Scholarship. 230.
https://digitalcommons.dartmouth.edu/facoa/230