Document Type

Article

Publication Date

2008

Publication Title

PLoS Genetics

Department

Department of Biological Sciences

Abstract

In humans, meiotic chromosome segregation errors increase dramatically as women age, but the molecular defects responsible are largely unknown. Cohesion along the arms of meiotic sister chromatids provides an evolutionarily conserved mechanism to keep recombinant chromosomes associated until anaphase I. One attractive hypothesis to explain age- dependent nondisjunction (NDJ) is that loss of cohesion over time causes recombinant homologues to dissociate prematurely and segregate randomly during the first meiotic division. Using Drosophila as a model system, we have tested this hypothesis and observe a significant increase in meiosis I NDJ in experimentally aged Drosophila oocytes when the cohesin protein SMC1 is reduced. Our finding that missegregation of recombinant homologues increases with age supports the model that chiasmata are destabilized by gradual loss of cohesion over time. Moreover, the stage at which Drosophila oocytes are most vulnerable to age-related defects is analogous to that at which human oocytes remain arrested for decades. Our data provide the first demonstration in any organism that, when meiotic cohesion begins intact, the aging process can weaken it sufficiently and cause missegregation of recombinant chromosomes. One major advantage of these studies is that we have reduced but not eliminated the SMC1 subunit. Therefore, we have been able to investigate how aging affects normal meiotic cohesion. Our findings that recombinant chromosomes are at highest risk for loss of chiasmata during diplotene argue that human oocytes are most vulnerable to age-induced loss of meiotic cohesion at the stage at which they remain arrested for several years.

DOI

10.1371/journal.pgen.1000263

Original Citation

Subramanian VV, Bickel SE. Aging predisposes oocytes to meiotic nondisjunction when the cohesin subunit SMC1 is reduced. PLoS Genet. 2008 Nov;4(11):e1000263. doi: 10.1371/journal.pgen.1000263. Epub 2008 Nov 14. PMID: 19008956; PMCID: PMC2577922.

COinS