Document Type

Article

Publication Date

1-12-2004

Publication Title

Infection and Immunity

Department

Geisel School of Medicine

Abstract

Entry of bacteria from the vagina into the uterus raises the question of uterine epithelial cell (UEC) signaling in response to the presence of bacteria. Our model system helps to define microbially elicited UEC basolateral cytokine release, important in regulating underlying stromal immune cell protection. UECs from adult rats were grown in cell culture inserts to establish a confluent polarized monolayer as was determined by transepithelial resistance (TER). Polarized epithelial cell cultures were treated apically with live or heat-killed Escherichia coli or Lactobacillus rhamnosus prior to collection of basolateral media after 24 h of incubation. Coculture of polarized UECs with live E. coli had no effect on epithelial cell TER. In response to exposure to live E. coli, epithelial cell basolateral release of macrophage inflammatory protein 3α (MIP3 α) and tumor necrosis factor alpha (TNF-α) increased at a time when basolateral release of biologically active transforming growth factor β (TGF-β) decreased. Incubation of UECs with heat-killed E. coli resulted in an increased basolateral release of MIP3α and TNF-α, without affecting TER or TGF-β. In contrast to E. coli, live or heat-killed L. rhamnosus had no effect on TER or cytokine release. These studies indicate that polarized rat UECs respond to gram-negative E. coli by releasing the cytokines MIP3α and TNF-α, signals important to both the innate and adaptive immune systems. These findings suggest that UEC responses to bacteria are selective and important in initiating and regulating immune protection in the female reproductive tract.

DOI

10.1128/IAI.72.4.1866-1873.2004

Share

COinS