Document Type
Article
Publication Date
2-4-2008
Publication Title
Journal of Glaciology
Department
Thayer School of Engineering
Abstract
In order to examine the effects of solutes on recrystallization and subsequent grain growth in ice, both doped and undoped ice single crystals were extruded through a 120o equal-channel angular extrusion jig, in order to impart a large shear strain (~1.15). Upon subsequent annealing at –3o C, the original single crystals recrystallized, in most cases to a new single crystal with a different orientation. Increasing the solute concentration (for H2SO4 to ~200–300ppb, and for NaCl, KCl and MgSO4 to >5ppm) was found to significantly retard the growth and possibly, for H2SO4-doped ice, the nucleation of new grains in the strained ice single crystals. This is indicative of how soluble impurities can retard grain growth in ice cores. It was also found that the migrating grain boundaries surrounding the newly formed grains contained large concentrations of impurities, often observed as filaments. These could have formed by the grain boundaries sweeping up impurities from the lattice into the boundary or by their diffusion to the boundary–mechanisms whereby impurities could be concentrated into the grain boundaries in ice cores– although the latter mechanism seems unlikely since it would require very high diffusion rates.
DOI
10.3189/002214308784886216
Original Citation
Iliescu, D., & Baker, I. (2008). Effects of impurities and their redistribution during recrystallization of ice crystals. Journal of Glaciology, 54(185), 362-370. doi:10.3189/002214308784886216
Dartmouth Digital Commons Citation
Iliescu, D. and Baker, I., "Effects of Impurities and their Redistribution during Recrystallization of Ice Crystals" (2008). Dartmouth Scholarship. 2671.
https://digitalcommons.dartmouth.edu/facoa/2671