Document Type
Conference Paper
Publication Date
10-2018
Publication Title
UIST '18, October 14–17, 2018, Berlin, Germany
Department
Department of Computer Science
Abstract
We present a self-powered module for gesture recognition that utilizes small, low-cost photodiodes for both energy harvesting and gesture sensing. Operating in the photovoltaic mode, photodiodes harvest energy from ambient light. In the meantime, the instantaneously harvested power from individual photodiodes is monitored and exploited as a clue for sensing finger gestures in proximity. Harvested power from all photodiodes are aggregated to drive the whole gesture-recognition module including a micro-controller running the recognition algorithm. We design robust, lightweight algorithm to recognize finger gestures in the presence of ambient light fluctuations. We fabricate two prototypes to facilitate user’s interaction with smart glasses and smart watches. Results show 99.7%/98.3% overall precision/recall in recognizing five gestures on glasses and 99.2%/97.5% precision/recall in recognizing seven gestures on the watch. The system consumes 34.6 µW/74.3 µW for the glasses/watch and thus can be powered by the energy harvested from ambient light. We also test system’s robustness under various light intensities, light directions, and ambient light fluctuations. The system maintains high recognition accuracy (> 96%) in all tested settings.
DOI
10.1145/3242587.3242635
Dartmouth Digital Commons Citation
Li, Yichen; Li, Tianxing; Patel, Ruchir; Zhou, Xia; and Yang, Xing-Dong, "Self-Powered Gesture Recognition with Ambient Light" (2018). Dartmouth Scholarship. 2986.
https://digitalcommons.dartmouth.edu/facoa/2986
Comments
Published by the Association of Computing Machinery