Document Type

Conference Paper

Publication Date

7-2008

Publication Title

Proceedings of the Second International Conference on Distributed Event-Based Systems (DEBS)

Department

Department of Computer Science

Abstract

We consider a distributed system that disseminates high-volume event streams to many simultaneous monitoring applications over a low-bandwidth network. For bandwidth efficiency, we propose a group-aware stream filtering approach, used together with multicasting, that exploits two overlooked, yet important, properties of monitoring applications: 1) many of them can tolerate some degree of “slack” in their data quality requirements, and 2) there may exist multiple subsets of the source data satisfying the quality needs of an application. We can thus choose the “best alternative” subset for each application to maximize the data overlap within the group to best benefit from multicasting. Here we provide a general framework for the group-aware stream filtering problem, which we prove is NP-hard. We introduce a suite of heuristics-based algorithms that ensure data quality (specifically, granularity and timeliness) while preserving bandwidth. Our evaluation shows that group-aware stream filtering is effective in trading CPU time for bandwidth savings, compared with self-interested filtering.

DOI

10.1145/1385989.1385998

Original Citation

Ming Li and David Kotz. Quality-Managed Group-Aware Stream Filtering. In Proceedings of the Second International Conference on Distributed Event-Based Systems (DEBS), July 2008. 10.1145/1385989.1385998

Share

COinS