Document Type
Article
Publication Date
8-30-2006
Publication Title
Physical Review A - Atomic, Molecular, and Optical Physics
Department
Department of Physics and Astronomy
Abstract
We propose a general method for introducing extensive characteristics of quantum entanglement. The method relies on polynomials of nilpotent raising operators that create entangled states acting on a reference vacuum state. By introducing the notion of tanglemeter, the logarithm of the state vector represented in a special canonical form and expressed via polynomials of nilpotent variables, we show how this description provides a simple criterion for entanglement as well as a universal method for constructing the invariants characterizing entanglement. We compare the existing measures and classes of entanglement with those emerging from our approach. We derive the equation of motion for the tanglemeter and, in representative examples of up to four-qubit systems, show how the known classes appear in a natural way within our framework. We extend our approach to qutrits and higher-dimensional systems, and make contact with the recently introduced idea of generalized entanglement. Possible future developments and applications of the method are discussed.
DOI
10.1103/PhysRevA.74.022331
Dartmouth Digital Commons Citation
Mandilara, Aikaterini; Akulin, Vladimir M.; Smilga, Andrei V.; and Viola, Lorenza, "Quantum Entanglement Via Nilpotent Polynomials" (2006). Dartmouth Scholarship. 3139.
https://digitalcommons.dartmouth.edu/facoa/3139