Document Type

Article

Publication Date

3-11-2015

Publication Title

Physical Review A - Atomic, Molecular, and Optical Physics

Department

Department of Physics and Astronomy

Abstract

Control strategies for dissipative preparation of target quantum states, both pure and mixed, and subspaces are obtained by switching between a set of available semigroup generators. We show that the class of problems of interest can be recast, from a control-theoretic perspective, into a switched-stabilization problem for linear dynamics. This is attained by a suitable affine transformation of the coherence-vector representation. In particular, we propose and compare stabilizing time-based and state-based switching rules for entangled state preparation, showing that the latter not only ensure faster convergence with respect to nonswitching methods, but can be designed so that they retain robustness with respect to initialization, as long as the target is a pure state or a subspace.

DOI

10.1103/PhysRevA.91.062314

Share

COinS