Document Type
Article
Publication Date
2018
Publication Title
JMIR Research Protocols
Department
Department of Computer Science
Abstract
Background: Smartphones enable the implementation of just-in-time adaptive interventions (JITAIs) that tailor the delivery of health interventions over time to user- and time-varying context characteristics. Ideally, JITAIs include effective intervention components, and delivery tailoring is based on effective moderators of intervention effects. Using machine learning techniques to infer each user’s context from smartphone sensor data is a promising approach to further enhance tailoring.
Objective: The primary objective of this study is to quantify main effects, interactions, and moderators of 3 intervention components of a smartphone-based intervention for physical activity. The secondary objective is the exploration of participants’ states of receptivity, that is, situations in which participants are more likely to react to intervention notifications through collection of smartphone sensor data.
Methods: In 2017, we developed the Assistant to Lift your Level of activitY (Ally), a chatbot-based mobile health intervention for increasing physical activity that utilizes incentives, planning, and self-monitoring prompts to help participants meet personalized step goals. We used a microrandomized trial design to meet the study objectives. Insurees of a large Swiss insurance company were invited to use the Ally app over a 12-day baseline and a 6-week intervention period. Upon enrollment, participants were randomly allocated to either a financial incentive, a charity incentive, or a no incentive condition. Over the course of the intervention period, participants were repeatedly randomized on a daily basis to either receive prompts that support self-monitoring or not and on a weekly basis to receive 1 of 2 planning interventions or no planning. Participants completed a Web-based questionnaire at baseline and postintervention follow-up.
Results: Data collection was completed in January 2018. In total, 274 insurees (mean age 41.73 years; 57.7% [158/274] female) enrolled in the study and installed the Ally app on their smartphones. Main reasons for declining participation were having an incompatible smartphone (37/191; 19.4%) and collection of sensor data (35/191; 18.3%). Step data are available for 227 (82.8%, 227/274) participants, and smartphone sensor data are available for 247 (90.1%. 247/274) participants.
Original Citation
Jan-Niklas Kramer, Florian Künzler, Varun Mishra, Bastien Presset, David Kotz, Shawna Smith, Urte Scholz, and Tobias Kowatsch. Investigating Intervention Components and Exploring States of Receptivity for a Smartphone App to Promote Physical Activity: Study Protocol of the ALLY Micro-Randomized Trial. InJMIR Research Protocols, 2018.
Dartmouth Digital Commons Citation
Kramer, Jan-Niklas; Künzler, Florian; Mishra, Varun; Presset, Bastien; Kotz, David; Smith, Shawna; Scholz, Urte; and Kowatsch, Tobias, "Investigating Intervention Components and Exploring States of Receptivity for a Smartphone App to Promote Physical Activity: Study Protocol of the Ally Micro-Randomized Trial" (2018). Dartmouth Scholarship. 3335.
https://digitalcommons.dartmouth.edu/facoa/3335