Document Type
Article
Publication Date
3-1-1992
Publication Title
Journal of Clinical Investigation
Department
Geisel School of Medicine
Abstract
We examined the regulation by adenosine of a 305-pS chloride (Cl-) channel in the apical membrane of a continuous cell line derived from rabbit cortical collecting duct (RCCT-28A) using the patch clamp technique. Stimulation of A1 adenosine receptors by N6-cyclohexyladenosine (CHA) activated the channel in cell-attached patches. Phorbol 12,13-didecanoate and 1-oleoyl 2-acetylglycerol, activators of protein kinase C (PKC), mimicked the effect of CHA, whereas the PKC inhibitor H7 blocked the action of CHA. Stimulation of A1 adenosine receptors also increased the production of diacylglycerol, an activator of PKC. Exogenous PKC added to the cytoplasmic face of inside-out patches also stimulated the Cl- channel. Alkaline phosphatase reversed PKC activation. These results show that stimulation of A1 adenosine receptors activates a 305-pS Cl-channel in the apical membrane by a phosphorylation-dependent pathway involving PKC. In previous studies, we showed that the protein G alpha i-3 activated the 305-pS Cl- channel (Schwiebert et al. 1990. J. Biol. Chem. 265:7725-7728). We, therefore, tested the hypothesis that PKC activates the channel by a G protein-dependent pathway. In inside-out patches, pertussis toxin blocked PKC activation of the channel. In contrast, H7 did not prevent G protein activation of the channel. We conclude that adenosine activates a 305-pS Cl- channel in the apical membrane of RCCT-28A cells by a membrane-delimited pathway involving an A1 adenosine receptor, phospholipase C, diacylglycerol, PKC, and a G protein. Because we have shown, in previous studies, that this Cl- channel participates in the regulatory volume decrease subsequent to cell swelling, adenosine release during ischemic cell swelling may activate the Cl-channel and restore cell volume.
DOI
10.1172/JCI115662
Original Citation
Schwiebert EM, Karlson KH, Friedman PA, Dietl P, Spielman WS, Stanton BA. Adenosine regulates a chloride channel via protein kinase C and a G protein in a rabbit cortical collecting duct cell line. J Clin Invest. 1992;89(3):834-841. doi:10.1172/JCI115662
Dartmouth Digital Commons Citation
Schwiebert, Erik M.; Karlson, Katherine H.; Friedman, Peter A.; Dietl, Paul; Spielman, William S.; and Stanton, Bruce, "Adenosine Regulates a Chloride Channel via Protein Kinase C and a G Protein in a Rabbit Cortical Collecting Duct Cell Line." (1992). Dartmouth Scholarship. 3617.
https://digitalcommons.dartmouth.edu/facoa/3617