Document Type
Article
Publication Date
9-1-2016
Publication Title
Journal of Biomedical Optics
Department
Thayer School of Engineering
Abstract
Optically derived tissue properties across a range of breast densities and the effects of breast compression on estimates of hemoglobin, oxygen metabolism, and water and lipid concentrations were obtained from a coregistered imaging system that integrates near-infrared spectral tomography (NIRST) with digital breast tomosynthesis (DBT). Image data were analyzed from 27 women who underwent four IRB approved NIRST/DBT exams that included fully and mildly compressed breast acquisitions in two projections—craniocaudal (CC) and mediolateral-oblique (MLO)—and generated four data sets per patient (full and moderate compression in CC and MLO views). Breast density was correlated with HbT (r=0.64, p=0.001), water (r=0.62, p=0.003), and lipid concentrations (r=?0.74, p<0.001), but not oxygen saturation. CC and MLO views were correlated for individual subjects and demonstrated no statistically significant differences in grouped analysis. Comparison of compressed and uncompressed imaging demonstrated a significant decrease in oxygen saturation under compression (58% versus 50%, p=0.04). Mammographic breast density categorization was correlated with measured optically derived properties.
DOI
10.1117/1.JBO.21.9.091316
Dartmouth Digital Commons Citation
Michaelsen, Kelly E.; Krishnaswamy, Venkataramanan; Shi, Linxi; Vedantham, Srinivasan; Karellas, Andrew; Pogue, Brian W.; Paulsen, Keith D.; and Poplack, Steven P., "Effects of Breast Density and Compression on Normal Breast Tissue Hemodynamics through Breast Tomosynthesis Guided Near-Infrared Spectral Tomography" (2016). Dartmouth Scholarship. 3725.
https://digitalcommons.dartmouth.edu/facoa/3725