Document Type
Article
Publication Date
12-29-2009
Publication Title
Social Cognitive and Affective Neuroscience
Department
Department of Psychological and Brain Sciences
Abstract
An incredible amount of data is generated in the course of a functional neuroimaging experiment. The quantity of data gives us improved temporal and spatial resolution with which to evaluate our results. It also creates a staggering multiple testing problem. A number of methods have been created that address the multiple testing problem in neuroimaging in a principled fashion. These methods place limits on either the familywise error rate (FWER) or the false discovery rate (FDR) of the results. These principled approaches are well established in the literature and are known to properly limit the amount of false positives across the whole brain. However, a minority of papers are still published every month using methods that are improperly corrected for the number of tests conducted. These latter methods place limits on the voxelwise probability of a false positive and yield no information on the global rate of false positives in the results. In this commentary, we argue in favor of a principled approach to the multiple testing problem—one that places appropriate limits on the rate of false positives across the whole brain gives readers the information they need to properly evaluate the results.
DOI
10.1093/scan/nsp053
Original Citation
Bennett CM, Wolford GL, Miller MB. The principled control of false positives in neuroimaging. Soc Cogn Affect Neurosci. 2009 Dec;4(4):417-22. doi: 10.1093/scan/nsp053. PMID: 20042432; PMCID: PMC2799957.
Dartmouth Digital Commons Citation
Bennett, Craig M.; Wolford, George L.; and Miller, Michael B., "The Principled Control of False Positives in Neuroimaging" (2009). Dartmouth Scholarship. 3783.
https://digitalcommons.dartmouth.edu/facoa/3783