Document Type
Article
Publication Date
2-18-2009
Publication Title
Molecular Biology of the Cell
Department
Department of Biological Sciences
Abstract
Septins are conserved, GTP-binding proteins that assemble into higher order structures, including filaments and rings with varied cellular functions. Using four-dimensional quantitative fluorescence microscopy of Ashbya gossypii fungal cells, we show that septins can assemble into morphologically distinct classes of rings that vary in dimensions, intensities, and positions within a single cell. Notably, these different classes coexist and persist for extended times, similar in appearance and behavior to septins in mammalian neurons and cultured cells. We demonstrate that new septin proteins can add through time to assembled rings, indicating that septins may continue to polymerize during ring maturation. Different classes of rings do not arise from the presence or absence of specific septin subunits and ring maintenance does not require the actin and microtubule cytoskeletons. Instead, morphological and behavioral differences in the rings require the Elm1p and Gin4p kinases. This work demonstrates that distinct higher order septin structures form within one cell because of the action of specific kinases.
DOI
10.1091/mbc.E08-12-1169
Original Citation
DeMay BS, Meseroll RA, Occhipinti P, Gladfelter AS. Regulation of distinct septin rings in a single cell by Elm1p and Gin4p kinases. Mol Biol Cell. 2009 Apr;20(8):2311-26. doi: 10.1091/mbc.e08-12-1169. Epub 2009 Feb 18. PMID: 19225152; PMCID: PMC2669037.
Dartmouth Digital Commons Citation
DeMay, Bradley S.; Meseroll, Rebecca A.; Occhipinti, Patricia; and Gladfelter, Amy S., "Regulation of Distinct Septin Rings in a Single Cell by Elm1p and Gin4p Kinases" (2009). Dartmouth Scholarship. 3825.
https://digitalcommons.dartmouth.edu/facoa/3825