Document Type
Article
Publication Date
9-26-2013
Publication Title
Molecular Biology of the Cell
Department
Geisel School of Medicine
Abstract
The fusion of yeast vacuolar membranes depends on the disassembly of cis–soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes and the subsequent reassembly of new SNARE complexes in trans. The disassembly of cis-SNARE complexes by Sec17/Sec18p releases the soluble SNARE Vam7p from vacuolar membranes. Consequently, Vam7p needs to be recruited to the membrane at future sites of fusion to allow the formation of trans-SNARE complexes. The multisubunit tethering homotypic fusion and vacuole protein sorting (HOPS) complex, which is essential for the fusion of vacuolar membranes, was previously shown to have direct affinity for Vam7p. The functional significance of this interaction, however, has been unclear. Using a fully reconstituted in vitro fusion reaction, we now show that HOPS facilitates membrane fusion by recruiting Vam7p for fusion. In the presence of HOPS, unlike with other tethering agents, very low levels of added Vam7p suffice to induce vigorous fusion. This is a specific recruitment of Vam7p rather than an indirect stimulation of SNARE complex formation through tethering, as HOPS does not facilitate fusion with a low amount of a soluble form of another vacuolar SNARE, Vti1p. Our findings establish yet another function among the multiple tasks that HOPS performs to catalyze the fusion of yeast vacuoles.
DOI
10.1091/mbc.E13-07-0419
Original Citation
Zick M, Wickner W. The tethering complex HOPS catalyzes assembly of the soluble SNARE Vam7 into fusogenic trans-SNARE complexes. Mol Biol Cell. 2013 Dec;24(23):3746-53. doi: 10.1091/mbc.E13-07-0419. Epub 2013 Oct 2. PMID: 24088569; PMCID: PMC3843000.
Dartmouth Digital Commons Citation
Zick, Michael and Wickner, William, "The Tethering Complex HOPS Catalyzes Assembly of the Soluble SNARE Vam7 into Fusogenic Trans-SNARE Complexes" (2013). Dartmouth Scholarship. 3874.
https://digitalcommons.dartmouth.edu/facoa/3874