Document Type

Article

Publication Date

8-17-2017

Publication Title

Journal of Biomedical Optics

Department

Thayer School of Engineering

Abstract

We present a framework for characterizing the performance of an experimental imaging technology, diffuse optical spectroscopic imaging (DOSI), in a 2-year multicenter American College of Radiology Imaging Network (ACRIN) breast cancer study (ACRIN-6691). DOSI instruments combine broadband frequency-domain photon migration with time-independent near-infrared (650 to 1000 nm) spectroscopy to measure tissue absorption and reduced scattering spectra and tissue hemoglobin, water, and lipid composition. The goal of ACRIN-6691 was to test the effectiveness of optically derived imaging endpoints in predicting the final pathologic response of neoadjuvant chemotherapy (NAC). Sixty patients were enrolled over a 2-year period at participating sites and received multiple DOSI scans prior to and during 3- to 6-month NAC. The impact of three sources of error on accuracy and precision, including different operators, instruments, and calibration standards, was evaluated using a broadband reflectance standard and two different solid tissue-simulating optical phantoms. Instruments showed < 0.0010 mm−1 (10.3%) and 0.06 mm−1 (4.7%) deviation in broadband absorption and reduced scattering, respectively, over the 2-year duration of ACRIN-6691. These variations establish a useful performance criterion for assessing instrument stability. The proposed procedures and tests are not limited to DOSI; rather, they are intended to provide methods to characterize performance of any instrument used in translational optical imaging.

DOI

10.1117/1.JBO.22.12.121604

Original Citation

Leproux A, O'Sullivan TD, Cerussi A, Durkin A, Hill B, Hylton N, Yodh AG, Carp SA, Boas D, Jiang S, Paulsen KD, Pogue B, Roblyer D, Yang W, Tromberg BJ. Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial. J Biomed Opt. 2017 Dec 1;22(12):121604. doi: 10.1117/1.JBO.22.12.121604. Epub 2017 Aug 17. PMID: 29389104; PMCID: PMC5995138.

COinS