Document Type
Article
Publication Date
12-1-2021
Publication Title
Scientific Reports
Department
Geisel School of Medicine
Additional Department
Department of Computer Science
Abstract
We developed end-to-end deep learning models using whole slide images of adults diagnosed with diffusely infiltrating, World Health Organization (WHO) grade 2 gliomas to predict prognosis and the mutation status of a somatic biomarker, isocitrate dehydrogenase (IDH) 1/2. The models, which utilize ResNet-18 as a backbone, were developed and validated on 296 patients from The Cancer Genome Atlas (TCGA) database. To account for the small sample size, repeated random train/test splits were performed for hyperparameter tuning, and the out-of-sample predictions were pooled for evaluation. Our models achieved a concordance- (C-) index of 0.715 (95% CI: 0.569, 0.830) for predicting prognosis and an area under the curve (AUC) of 0.667 (0.532, 0.784) for predicting IDH mutations. When combined with additional clinical information, the performance metrics increased to 0.784 (95% CI: 0.655, 0.880) and 0.739 (95% CI: 0.613, 0.856), respectively. When evaluated on the WHO grade 3 gliomas from the TCGA dataset, which were not used for training, our models predicted survival with a C-index of 0.654 (95% CI: 0.537, 0.768) and IDH mutations with an AUC of 0.814 (95% CI: 0.721, 0.897). If validated in a prospective study, our method could potentially assist clinicians in managing and treating patients with diffusely infiltrating gliomas.
DOI
10.1038/s41598-021-95948-x
Original Citation
Jiang, S., Zanazzi, G.J. & Hassanpour, S. Predicting prognosis and IDH mutation status for patients with lower-grade gliomas using whole slide images. Sci Rep 11, 16849 (2021). https://doi.org/10.1038/s41598-021-95948-x
Dartmouth Digital Commons Citation
Jiang, Shuai; Zanazzi, George J.; and Hassanpour, Saeed, "Predicting prognosis and IDH mutation status for patients with lower-grade gliomas using whole slide images" (2021). Dartmouth Scholarship. 4161.
https://digitalcommons.dartmouth.edu/facoa/4161