Document Type

Article

Publication Date

6-2-2015

Publication Title

Annales Geophysicae

Department

Thayer School of Engineering

Abstract

During the ascending phase of solar cycle 24, a series of interplanetary coronal mass ejections (ICMEs) in the period 7–17 March 2012 caused geomagnetic storms that strongly affected high-latitude ionosphere in the Northern and Southern Hemisphere. GPS phase scintillation was observed at northern and southern high latitudes by arrays of GPS ionospheric scintillation and TEC monitors (GISTMs) and geodetic-quality GPS receivers sampling at 1 Hz. Mapped as a function of magnetic latitude and magnetic local time, regions of enhanced scintillation are identified in the context of coupling processes between the solar wind and the magnetosphere–ionosphere system. Large southward IMF and high solar wind dynamic pressure resulted in the strongest scintillation in the nightside auroral oval. Scintillation occurrence was correlated with ground magnetic field perturbations and riometer absorption enhancements, and collocated with mapped auroral emission. During periods of southward IMF, scintillation was also collocated with ionospheric convection in the expanded dawn and dusk cells, with the antisunward convection in the polar cap and with a tongue of ionization fractured into patches. In contrast, large northward IMF combined with a strong solar wind dynamic pressure pulse was followed by scintillation caused by transpolar arcs in the polar cap.

DOI

10.5194/angeo-33-637-2015

Share

COinS