Date of Award
5-1-2008
Document Type
Thesis (Ph.D.)
Department or Program
Department of Computer Science
First Advisor
Fillia Makedon
Abstract
Recent technological advances have fostered the emergence of Wireless Sensor Networks (WSNs), which consist of tiny, wireless, battery-powered nodes that are expected to revolutionize the ways in which we understand and construct complex physical systems. A fundamental property needed to use and maintain these WSNs is ``localization'', which allows the establishment of spatial relationships among nodes over time. This dissertation presents a series of Geographic Distributed Localization (GDL) algorithms for mixed WSNs, in which both static and mobile nodes can coexist. The GDL algorithms provide a series of useful methods for localization in mixed WSNs. First, GDL provides an approximation called ``hop-coordinates'', which improves the accuracy of both hop-counting and connectivity-based measurement techniques. Second, GDL utilizes a distributed algorithm to compute the locations of all nodes in static networks with the help of the hop-coordinates approximation. Third, GDL integrates a sensor component into this localization paradigm for possible mobility and as a result allows for a more complex deployment of WSNs as well as lower costs. In addition, the development of GDL incorporated the possibility of manipulated communications, such as wormhole attacks. Simulations show that such a localization system can provide fundamental support for security by detecting and localizing wormhole attacks. Although several localization techniques have been proposed in the past few years, none currently satisfies our requirements to provide an accurate, efficient and reliable localization for mixed WSNs. The contributions of this dissertation are: (1) our measurement technique achieves better accuracy both in measurement and localization than other methods; (2) our method significantly improves the efficiency of localization in updating location in mixed WSNs by incorporating sensors into the method; (3) our method can detect and locate the communication that has been manipulated by a wormhole in a network without relying on a central server.
Recommended Citation
Xu, Yurong, "Anchor-Free Localization in Mixed Wireless Sensor Network Systems" (2008). Dartmouth College Ph.D Dissertations. 24.
https://digitalcommons.dartmouth.edu/dissertations/24
Comments
Originally posted in the Dartmouth College Computer Science Technical Report Series, number TR2008-626.