Date of Award

6-4-2020

Document Type

Thesis (Undergraduate)

Department

Department of Computer Science

First Advisor

Saeed Hassanpour

Abstract

Within the realm of abusive content detection for social media, little research has been conducted on the transphobic hate group known as trans-exclusionary radical feminists (TERFs). The community engages in harmful behaviors such as targeted harassment of transgender people on Twitter, and perpetuates transphobic rhetoric such as denial of trans existence under the guise of feminism. This thesis analyzes the network of the TERF community on Twitter, by discovering several sub-communities as well as modeling the topics of their tweets. We also introduce TERFSPOT, a classifier for predicting whether a Twitter user is a TERF or not, based on a combination of network and textual features. The contributions of this work are twofold: we conduct the first large-scale computational analysis of the TERF hate group on Twitter, and demonstrate a classifier with a 90% accuracy for identifying TERFs.

Comments

Originally posted in the Dartmouth College Computer Science Technical Report Series, number TR2020-900.

Share

COinS